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Abstract. Let Moldn,d be the moduli of d-dimensional subalgebras of the full matrix
ring of degree n over Z. We describe the dimension of the Zariski tangent space TxMoldn,d
and the smoothness of Moldn,d → Z at a point x of Moldn,d by using Hochschild coho-
mology. We also calculate several examples of Hochschild cohomology Hi(A,Mn(k)/A)
for k-subalgebras A of Mn(k) over a field k.
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1. Introduction

Let Moldn,d be the moduli of d-dimensional subalgebras of the full matrix ring of degree
n over Z. More precisely, Moldn,d is the moduli of rank d molds of degree n (for details, see
Definition 3 and Proposition 4). In this paper, we describe the dimension of the Zariski
tangent space TxMoldn,d and the smoothness of Moldn,d → Z at a point x of Moldn,d by
using Hochschild cohomology. We can apply these results to describing the moduli of
molds. For example, we obtain

Moldnon−comm
3,3

∼= ((P2
Z × P2

Z) \∆)
⨿

((P2
Z × P2

Z) \∆)

in Theorem 33. We have not yet found elementary proofs of Theorem 33 without using
Hochschild cohomology. The long proof of Theorem 33 will be shown in [5].

We also calculate several examples of Hochschild cohomology H i(A,Mn(k)/A) for k-
subalgebras A of Mn(k) over a field k. It is important to calculate H i(A,Mn(k)/A) for
investigating Moldn,d. It seems to us that H i(A,Mn(k)/A) is easier to calculate than
H i(A,A), because H i(A,Mn(k)/A) often vanishes as in Theorem 22. This is one of
the reason why Moldn,d is easier to investigate than the moduli of algebras in the sense
of Gabriel ([2]). There exist 26 equivalence classes of k-subalgebras of M3(k) for any
algebraically closed field k ([4, Theorem 2] and [5]). We will calculate H i(A,Mn(k)/A)
for each k-subalgebras A of M3(k) in [6].

The organization of this paper is as follows. In Section 2, we define Hochschild coho-
mology and the moduli Moldn,d of molds. In Section 3, we calculate the dimension of
the Zariski tangent space of Moldn,d at x by Hochschild cohomology. In Section 4, we
describe the smoothness of the morphism Moldn,d → Z. In Section 5, we introduce several
examples of Hochschild cohomology H i(A,Mn(k)/A) for k-subalgebras A of Mn(k) over
a field k.

The detailed version of this paper will be submitted for publication elsewhere.



2. Preliminaries

In this section, we define Hochschild cohomology and the moduli Moldn,d of molds.
These objects are the main characters in this paper.

Definition 1. Let A be an associative algebra over a commutative ring R. Let M be an
A-bimodule. Assume that A is projective over R. Let Ae := A⊗R Aop be the enveloping
algebra of A. For A-bimodules A and M , we can regard them as left Ae-modules. We
define the i-th Hochschild cohomology group H i(A,M) as ExtiAe(A,M).

Proposition 2. Let R, A, and M be as above. We can calculate H i(A,M) by taking the
cohomology groups of the bar complex (Ci(A,M), di)i∈Z which is given by

Ci(A,M) :=

{
HomR(A

⊗i,M) (i ≥ 0)
0 (i < 0)

and di : Ci(A,M)→ Ci+1(A,M) (i ≥ 0) defined by

di(f)(a1 ⊗ a2 ⊗ · · · ⊗ ai+1)

:= a1f(a2 ⊗ · · · ⊗ ai+1) +
i∑

j=1

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f(a1 ⊗ a2 ⊗ · · · ⊗ ai)ai+1

for f ∈ Ci(A,M). Here the tensor products are over R.

For introducing the moduli of subalgebras of the full matrix ring, we define molds on
schemes.

Definition 3 ([3, Definition 1.1]). Let X be a scheme. A subsheaf of OX-algebras A ⊆
Mn(OX) is said to be a mold of degree n on X if A and Mn(OX)/A are locally free sheaves
on X. We denote by rankA the rank of A as a locally free sheaf on X. For a commutative
ring R, we say that an R-subalgebra A ⊆ Mn(R) is a mold of degree n over R if A is a
mold of degree n on SpecR. (See also [4, Remark 4].)

Proposition 4 ([3, Definition and Proposition 1.1], [4, Proposition 5]). The following
contravariant functor is representable by a Z-scheme Moldn,d.

Moldn,d : (Sch)op → (Sets)
X 7→

{
A A：rank d mold of degree n on X

}
Moreover, Moldn,d is a closed subscheme of the Grassmann scheme Grass(d, n2).

Here we give examples of Moldn,d.

Example 5. [3, Example 1.1] In the case n = 2, we have

Mold2,1 = SpecZ,
Mold2,2 = P2

Z,

Mold2,3 = P1
Z,

Mold2,4 = SpecZ.



Example 6 ([4, Example 7], [5]). Let n = 3. If d = 1 or d ≥ 6, then

Mold3,1 = SpecZ,
Mold3,6 = Flag := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},
Mold3,7 = P2

Z

⨿
P2
Z,

Mold3,8 = ∅,
Mold3,9 = SpecZ.

In [4], we introduced the following theorems.

Theorem 7 ([4, Theorem 17], [5]).

Mold3,2
∼= P2

Z × P2
Z.

　

Theorem 8 ([4, Theorem 34], [5]). The moduli Mold3,3 has the following irreducible
decomposition:

Mold3,3 = Moldreg
3,3 ∪MoldS2

3,3 ∪MoldS3
3,3.

3. Zariski tangent space

Let A be the universal mold on Moldn,d. For a point x ∈ Moldn,d, let A(x) ⊆ Mn(k(x))
be the corresponding mold to x, where k(x) is the residue field of x. In this section, we
calculate the dimension of the Zariski tangent space of Moldn,d at x by the Hochschild
cohomology H1(A(x),Mn(k(x))/A(x)).

Let A be a k-subalgebra of Mn(k) over a field k. We define Derk(A,Mn(k)/A) by

Derk(A,Mn(k)/A) := {f ∈ Homk(A,Mn(k)/A) | f(ab) = af(b) + f(a)b for a, b ∈ A}.

Proposition 9 ([6]). Let TxMoldn,d be the Zariski tangent space of Moldn,d at x. There
exists an isomorphism

TxMoldn,d
∼= Derk(x)(A(x),Mn(k(x))/A(x)).

Proof. The Zariski tangent space TxMoldn,d consists of k(x)[ϵ]/(ϵ
2)-valued points of Moldn,d

mapping the closed point to x. We can easily check the statement. □

For a k-subalgebra A of Mn(k), let us define d : Mn(k)→ Derk(A,Mn(k)/A) by

d(X)(a) := [X, a] = Xa− aX mod A

for X ∈ Mn(k) and for a ∈ A. It is easy to check that d(X) ∈ Derk(A,Mn(k)/A).

Proposition 10 ([6]). There exists an isomorphism

H1(A,Mn(k)/A) ∼= Derk(A,Mn(k)/A)/Im d.



Proof. Let us consider the bar complex

0→ C0(A,Mn(k)/A)
d0→ C1(A,Mn(k)/A)

d1→ C2(A,Mn(k)/A)→ · · · .

Note that Kerd1 = Derk(A,Mn(k)/A) ⊇ Im d0 = Im d. Hence we haveH1(A,Mn(k)/A) ∼=
Derk(A,Mn(k)/A)/Im d. □

Let N(A) := {X ∈ Mn(k) | [X, a] ∈ A for any a ∈ A}. The k-linear map d : Mn(k) →
Derk(A,Mn(k)/A) induces a k-linear map d : Mn(k)/A → Derk(A,Mn(k)/A). Then we
have the following theorem:

Theorem 11 ([6]). There exists the following exact sequence

0→ N(A)/A→ Mn(k)/A
d→ Derk(A,Mn(k)/A)→ H1(A,Mn(k)/A)→ 0.

In particular,

dimk(x) TxMoldn,d = dimk(x) H
1(A(x),Mn(k(x))/A(x)) + n2 − dimk(x) N(A(x))

for x ∈ Moldn,d.

4. Smoothness

In this section, we consider the smoothness of the morphism Moldn,d → Z at a point
x of Moldn,d. By using H2(A(x),Mn(k(x))/A(x)), we can describe the smoothness of
Moldn,d → Z.

Let (R̃, m̃, k) be an Artin local ring. Let I be an ideal of R̃ such that m̃I = 0. Set

R := R̃/I andm := m̃/I. Then (R,m, k) is also an Artin local ring. Denote by π : R̃→ R

the canonical projection. Let s : R→ R̃ be a set theoretical section of π.
Assume that A ⊆ Mn(R) is a rank d mold, that is, A is an R-subalgebra of Mn(R)

such that Mn(R)/A is projective and rankRA = d. Let us consider the question “Is there

a lift Ã ∈ Moldn,d(R̃) of A?” In other words, is there an R̃-subalgebra Ã ⊆ Mn(R̃)

such that Mn(R̃)/Ã is R̃-projective and Ã ⊗R̃ R = A? If it always exists, the morphism
Moldn,d → Z is (formally) smooth. Hence we need to consider when there exists such a

lift Ã ∈ Moldn,d(R̃) of A.

Let us take a basis a1, a2, . . . , an2 of Mn(R) over R such that a1, a2, . . . , ad is a basis of A

over R. For 1 ≤ i ≤ n2, choose a lift S(ai) ∈ Mn(R̃) of ai for 1 ≤ i ≤ n2. Then we define

S : Mn(R) → Mn(R̃) by S(
∑n2

i=1 riai) =
∑n2

i=1 s(ri)S(ai) for
∑n2

i=1 riai ∈ Mn(R). Note

that S : Mn(R) → Mn(R̃) does not necessarily coincide with the map given by applying

s : R→ R̃ to each entries of matrices in Mn(R).
Let us define an R-linear map c′ : A⊗R A→ Mn(I) ∼= Mn(k)⊗k I by

c′(
∑

1≤i,j≤d

rijai ⊗ aj) =
∑

1≤i,j≤d

s(rij)(S(aiaj)− S(ai)S(aj))



for rij ∈ R. Note that I is a finite-dimensional k-vector space, since mI = 0 and I is a
finitely generated ideal of R. Set A0 := A ⊗R k ⊆ Mn(k). Since A = ⊕d

i=1Rai, we can
write A0 = ⊕d

i=1kai, where ai := (ai mod m). We denote by c′′ the composition

A⊗R A
c′→ Mn(k)⊗k I → (Mn(k)/A0)⊗k I.

It is easy to see that c′′ : A ⊗R A → (Mn(k)/A0) ⊗k I goes through A0 ⊗k A0. Then
c : A0⊗kA0 → (Mn(k)/A0)⊗kI is induced by c′′. Note that c : A0⊗kA0 → (Mn(k)/A0)⊗kI
is a cocycle in C2(A0, (Mn(k)/A0) ⊗k I). Here (Mn(k)/A0) ⊗k I is an A0-bimodule by
a · (X ⊗ x) · b = aXb⊗ x for X ⊗ x ∈ (Mn(k)/A0)⊗k I and for a, b ∈ A0.

Then we can obtain the following results (for proofs, see [6]).

Proposition 12 ([6]). The cohomology class [c] ∈ H2(A0, (Mn(k)/A0)⊗kI) is independent

from the choices of s : R→ R̃, a1, . . . , an2 ∈ Mn(R), and S(a1), . . . , S(an2) ∈ Mn(R̃).

Proposition 13 ([6]). Let (R,m, k), (R̃, m̃, k), I, and A0 be as above. Let A ∈ Moldn,d(R).

There exists Ã ∈ Moldn,d(R̃) such that Ã ⊗R̃ R = A if and only if the cohomology class
[c] is zero in H2(A0, (Mn(k)/A0)⊗k I).

Theorem 14 ([6]). Let x ∈ Moldn,d. If H
2(A(x),Mn(k(x))/A(x)) = 0, then the canonical

morphism Moldn,d → Z is smooth at x.

Remark 15. Even if H2(A(x),Mn(k(x))/A(x)) ̸= 0, the morphism Moldn,d → Z may be
smooth at x ∈ Moldn,d. For details, see Remark 30.

5. Hochschild cohomology H∗(A,Mn(k)/A)

Let A be a k-subalgebra of Mn(k) over a field k. We calculate several examples of
Hochschild cohomology groups H i(A,Mn(k)/A).

Let Q be a finite quiver. Denote by Q0 and Q1 the sets of vertices and arrows of Q,
respectively. For each oriented path α of Q, we denote by h(α) and t(α) the head and
the tail of α, respectively. Let RQ be the path algebra over a commutative ring R. We
define the arrow ideal F as the two-sided ideal of RQ generated by the paths of positive
length of Q.

Definition 16. A two-sided ideal of I of RQ is called admissible if F n ⊂ I ⊂ F for a
positive integer n and F/I is an R-free module which has an R-basis consisting of oriented
paths.

For an admissible ideal I, set Λ = RQ/I and r = F/I. Denote by E the R-subalgebra
of Λ generated by Q0. We can use the following result in [1] for calculating Hochschild
cohomology.

Proposition 17 ([1, Proposition 1.2]). Let M be a Λ-bimodule. The Hochschild coho-
mology R-modules H i(Λ,M) are the cohomology groups of the complex of E-bimodules

0→ME δ0→ HomEe(r,M)
δ1→ HomEe(r ⊗E r,M)

δ2→ · · ·

· · · δ
i−1

→ HomEe(r⊗i,M)
δi→ HomEe(r⊗i+1,M)

δi+1

→ · · · ,



　 where the tensor products are over E and

ME = {m ∈M | sm = ms for each s ∈ Q0}
δ0(m)(x) := xm−mx for m ∈ME and for x ∈ r,

δi(f)(x1 ⊗ · · · ⊗ xi+1) := x1f(x2 ⊗ · · · ⊗ xi+1)

+
i∑

j=1

(−1)jf(x1 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xi+1)

+(−1)i+1f(x1 ⊗ · · · ⊗ xi)xi+1.

Remark 18. Set r⊗0 := E. Then HomEe(r⊗0,M) = ME. Hence the complex above can
be written by {HomEe(r⊗n, E), δn}.

Definition 19. Let Q be a finite quiver without oriented cycles. We say that Q is ordered
if there exists no oriented path other than α joining t(α) to h(α) for each arrow α ∈ Q1.

Definition 20. Let Q be an ordered quiver. Let I be the two-sided ideal of RQ generated
by {

γ − δ ∈ RQ
γ and δ are oriented paths with
h(γ) = h(δ) and t(γ) = t(δ)

}
.

We call Λ = RQ/I an incidence R-algebra. Note that I is an admissible ideal.

For an ordered quiver Q, set n := |Q0|. For a, b ∈ Q0, we define a ≥ b if a = b or
there exists an oriented path α such that t(α) = a and h(α) = b. Then (Q0,≥) is a
partially ordered set (i.e. poset). Let Λ := RQ/I be the incidence algebra associated to
Q. For a ≥ b, let eb,a be the equivalence class of oriented paths from a to b in Λ. We
can write Λ = ⊕a≥bReb,a. Fix a numbering on Q0. By regarding eb,a as Eba, Λ can be
considered as an R-subalgebra of Mn(R) = ⊕a,b∈Q0REba, where Eba is the matrix unit.
We can write E = ⊕a∈Q0Rea,a and Ee = E ⊗R Eop = ⊕a,b∈Q0Rea,a ⊗ eb,b. We also have
r = F/I = ⊕a>bReb,a. (In the sequel, we denote Eba ∈ Mn(R) by eb,a for simplicity.)

Lemma 21 ([6]). For i ≥ 0, HomEe(r⊗i,Mn(R)/Λ) = 0.

Proof. As E-bimodules, r⊗i is isomorphic to ⊕s0>s1>···>siResi,s0 . On the other hand,
Mn(R)/Λ ∼= ⊕a̸≥bReb,a. Hence we have

HomEe(r⊗i,Mn(R)/Λ) ∼= ⊕s0>s1>···>si, a ̸≥b HomEe(Resi,s0 , Reb,a).

Since HomEe(Resi,s0 , Reb,a) ∼= esi,si(Reb,a)es0,s0 = 0, HomEe(r⊗i,Mn(R)/Λ) = 0. □

In this case, the complex {HomEe(r⊗n, E), δn} is zero. Summarizing the discussion
above, we have the following theorem.

Theorem 22 ([6]). Let Q be an ordered quiver with n = |Q0|. Let Λ be the incidence
algebra associated to Q. Then H i(Λ,Mn(R)/Λ) = 0 for i ≥ 0.

Example 23 ([6]). Let us consider the following quiver Q

1←− 2←− 3←− · · · ←− n.



Let Λ = RQ/I be the incidence algebra associated to Q over a commutative ring R. Then
Λ = ⊕1≤i≤j≤nRei,j. We can regard Λ as the upper triangular matrix ring

Bn(R) := {(aij) ∈ Mn(R) | aij = 0 for i > j}.
By Theorem 22,

H i(Bn(R),Mn(R)/Bn(R)) = 0

for i ≥ 0.

We introduce several examples without proofs.

Definition 24. Let n1, n2, . . . , ns be positive integers with
∑s

i=1 ni = n. We define the
R-subalgebra Pn1,n2,...,ns(R) of Mn(R) over a commutative ring R by

Pn1,n2,...,ns(R) = {(aij) ∈ Mn(R) | aij = 0 if
t∑

k=1

nk < i ≤
t+1∑
k=1

nk and j ≤
t∑

k=1

nk}.

In particular, P1,1,...,1(R) = Bn(R).

Proposition 25 ([6]). Let R be a commutative ring. Let Pn1,n2,...,ns(R) be as in Definition
24. Then H i(Pn1,n2,...,ns(R),Mn(R)/Pn1,n2,...,ns(R)) = 0 for i ≥ 0.

Let R be a commutative ring, and let Dn(R) := {(aij) ∈ Mn(R) | aij = 0 for i ̸= j} ⊂
Mn(R). In other words, Dn(R) is the R-subalgebra of diagonal matrices in Mn(R). Let
Q be the quiver consisting of n vertices and no arrows. Then Dn(R) is isomorphic to the
incidence algebra associated to Q. By Theorem 22, we obtain:

Proposition 26 ([6]). For i ≥ 0, H i(Dn(R),Mn(R)/Dn(R)) = 0.

Definition 27. Let R be a commutative ring. We define x ∈ Mn(R) by

x =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . . . . .
...

0 0 0 0
. . . 1

0 0 0 0 · · · 0


.

Let Jn(R) be the R-subalgebra of Mn(R) generated by x. Then Jn(R) ∼= R[x]/(xn) as
R-algebras.

Proposition 28 ([6]). Let Jn(R) be as above. Then

H i(Jn(R),Mn(R)/Jn(R)) =

{
Rn−1 ⊕ Ann(n) (i : even )
Rn−1 ⊕R/nR (i : odd ),

where Ann(n) := {a ∈ R | an = 0}.

Corollary 29 ([6]). For a field k,

H i(Jn(k),Mn(k)/Jn(k)) =

{
kn−1 (ch(k) ̸ | n)
kn (ch(k) | n).



Remark 30. Although H2(Jn(k),Mn(k)/Jn(k)) ̸= 0, Moldn,n is smooth at Jn(k). Indeed,

Jn(k) is contained in Moldreg
n,n := MoldDn

n,n ⊆ Moldn,n and Moldreg
n,n is smooth over Z.

We introduce an example of applications of Hochschild cohomology to describing the
moduli of molds. For a commutative ring R, set

S2(R) :=


 a 0 0

0 a c
0 0 b

 a, b, c ∈ R

 and S3(R) :=


 a 0 c

0 b 0
0 0 b

 a, b, c ∈ R

 .

Proposition 31 ([6]). For A = S2(R) or S3(R),

H i(A,M3(R)/A) =

{
R2 (i = 0)
0 (i > 0).

Definition 32. We define the non-commutative subalgebras part Moldnon−comm
n,d of Moldn,d

by

Moldnon−comm
n,d := {x ∈ Moldn,d | A(x) is not commutative },

where A(x) ⊆ Mn(k(x)) is the corresponding mold to x. Note that Moldnon−comm
n,d is an

open subscheme of Moldn,d.

Theorem 33 ([5]). Let V be a free sheaf of rank 3 on SpecZ. Denote by P∗(V ) and P∗(V )
the projective spaces consisting of rank 1 and rank 2 subbundles of V on SpecZ, respec-
tively. Let MoldS2

3,3 and MoldS3
3,3 be the subschemes of Mold3,3 consisting of subalgebras of

type S2 and S3, respectively. Then

MoldS2
3,3
∼= (P∗(V )× P∗(V )) \∆(P∗(V ))

and

MoldS3
3,3
∼= (P∗(V )× P∗(V )) \∆(P∗(V )),

where ∆(P∗(V )) and ∆(P∗(V )) are the diagonals of P∗(V ) × P∗(V ) and P∗(V ) × P∗(V ),
respectively. Moreover, we have

Moldnon−comm
3,3 = MoldS2

3,3

⨿
MoldS3

3,3
∼= ((P2

Z × P2
Z) \∆)

⨿
((P2

Z × P2
Z) \∆),

where ∆ is the diagonal of P2
Z × P2

Z.

By Proposition 31, MoldS2
3,2 and MoldS3

3,2 are smooth over Z. We need the result that

the local ring is reduced at each point of MoldS2
3,2 and MoldS3

3,2 for proving Theorem 33.
The proof of Theorem 33 is a little bit long. For details, see [5].

Corollary 34 ([5]). Let (R,m, k) be a local ring. Let A ⊆ M3(R) be an R-subalgebra
of M3(R) such that A and M3(R)/A are R-projective, rankRA = 3, and A ⊗R k is not
commutative. Then there exists P ∈ GL3(R) such that P−1AP = S2(R) or S3(R).
In other words, there exist distinct subline bunldes L1, L2 of R3 or distinct rank 2

subbundles W1,W2 of R3 such that

A = ⟨HomR(R
3/L1, L2)⟩ ⊂ EndR(R

3) = M3(R)



or
A = ⟨HomR(R

3/W1,W2)⟩ ⊂ EndR(R
3) = M3(R).

Here we regard HomR(R
3/L1, L2) and HomR(R

3/W1,W2) as the R-submodules of EndR(R
3)

by f 7→ ι◦f ◦π, where ι : L2 → R3 (or ι : W2 → R3) is the inclusion and π : R3 → R3/L1

(or π : R3 → R3/W1) is the projection. We denote by ⟨S⟩ the subalgebra of EndR(R
3)

generated by a subset S of EndR(R
3).
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